Automatic Non Linear Metric Learning - Application to Gesture Recognition. (Apprentissage automatique de métrique non linéaire - Application à la reconnaissance de gestes)

نویسنده

  • Samuel Berlemont
چکیده

As consumer devices become more and more ubiquitous, new interaction solutions are required. In this thesis, we explore inertial-based gesture recognition on Smartphones, where gestures holding a semantic value are drawn in the air with the device in hand. Based on accelerometer and gyrometer data, three main approaches exist in the literature. The earliest methods suggest to model the temporal structure of a gesture class, with Hidden Markov Models for example; while another approach consists in matching gestures with reference instances, using a non-linear distance measure generally based on Dynamic Time Warping. Finally, features can be extracted from gesture signals in order to train specific classifiers, such as Support Vector Machines. In our research, speed and delay constraints required by an application are critical, leading us to the choice of neural-based models. While Bi-Directional Long Short-Term Memory and Convolutional neural networks have already been investigated, the main issue is to tackle an open-world problem, which does not only require a good classification performance but, above all, an excellent capability to reject unknown classes. Thus, our work focuses on metric learning between gesture sample signatures using the "Siamese" architecture (Siamese Neural Network, SNN), which aims at modelling semantic relations between classes to extract discriminative features, applied to the MultiLayer Perceptron. Contrary to some popular versions of this algorithm, we opt for a strategy that does not require additional parameter fine tuning, namely a set threshold on dissimilar outputs, during training. Indeed, after a preprocessing step where the data is filtered and normalised spatially and temporally, the SNN is trained from sets of samples, composed of similar and dissimilar examples, to compute a higher-level representation of the gesture, where features are collinear for similar gestures, and orthogonal for dissimilar ones. While the original model already works for classification, multiple mathematical problems which can impair its learning capabilities are identified. Consequently, as opposed to the classical similar or dissimilar pair; or reference, similar and dissimilar sample triplet input set selection strategies, we propose to include samples from every available dissimilar classes, resulting in a better structuring of the output space. Moreover, we apply a regularisation on the outputs to better determine the objective function. Furthermore, the notion of polar sine enables a redefinition of the angular problem by maximising a normalised volume induced by the outputs of the Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2016LYSEI014/these.pdf © [S.C. Berlemont], [2016], INSA Lyon, tous droits réservés

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Un système de segmentation automatique de gestes appliqué à la Langue des Signes (An automatic gesture segmentation system applied to Sign Language) [in French]

RÉSUMÉ De nombreuses études sont en cours afin de développer des méthodes de traitement automatique de langues des signes. Plusieurs approches nécessitent de grandes quantités de données segmentées pour l’apprentissage des systèmes de reconnaissance. Nos travaux s’occupent de la segmentation semi-automatique de gestes afin de permettre d’identifier le début et la fin d’un signe dans un énoncé e...

متن کامل

Apprentissage de métrique appliqué à la détection de changement de page Web et aux attributs relatifs

This paper introduces a novel distance metric learning framework. Working with inequality constraints involving quadruplets of images, our approach aims at efficiently modeling similarity for rich or complex semantic label relationships. We study how our metric learning scheme can be exploited in contexts such as detection of important regions in Webpages or recognition with relative attributes...

متن کامل

Systèmes d'inférence floue auto-évolutifs. Apprentissage incrémental pour la reconnaissance de gestes manuscrits

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau...

متن کامل

Contribution à l'étude de la variabilité de la voix des personnes âgées en reconnaissance automatique de la parole (Contribution to the study of elderly people's voice variability in automatic speech recognition) [in French]

RÉSUMÉ L’utilisation de la reconnaissance vocale pour l’assistance à la vie autonome se heurte à la difficulté d’utilisation des systèmes de RAP qui ne sont pas prévus à la base pour la voix âgée. Pour caractériser les différences de comportement d’un système de reconnaissance entre les personnes âgées et non-âgées, nous avons étudié quels sont les phonèmes les moins bien reconnus en nous basan...

متن کامل

Eigenvoices: A compact representation of speakers in model space

Titre francais: Voix propres: Vers une représentation compacte des locuteurs dans l'espace des modèles Traduction du titre des figures: Figure 1: Schéma bloc d'un système de reconnaissance de la parole Figure 2: Schéma général du système de voix propres 1 Summary: In this article, we present a new approach to modeling speaker-dependent systems. The approach was inspired by the eigenfaces techni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016